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Abstract

Geometric loci are an important topic in geometry. We explore constructs of plane curves and
of space curves inspired by space trajectories (bicircular and tricircular motions). The exploration
relies on joint usage of Dynamic Geometry Software (DGS) and of a Computer Algebra System
(CAS), and involves automated methods to determine loci and sometimes dichotomy methods.
The computer assisted work reveals some surprises, in particular the respective roles of the two
kinds of software may be different from what previous works revealed. If previously the roles
were quite distinct, DGS for exploration and numerical approach, and CAS for symbolic proof,
here the CAS is needed for numerical methods also. The curves are described by trigonometric
parametrization, and implicitization is performed using elimination, for 2D and 3D models. Fi-
nally, we discuss approaches to developments using models and elaborate on the importance to
develop automatic dialog between kinds of software.

1 Introduction

1.1 A motivation: frequent presentation of transfer orbits of space probes.
A modern way to attract students to study mathematics consists in proposing activities around items
from the daily news: for example, events related to the International Space Station (ISS), the almost
simultaneous launching of three Mars-bound spacecrafts in February 2021 and their arrival 6 months
later, the James Webb space telescope launched 10 months later, etc. Since then, all of these provide
big titles. More recently, the race to the Moon, American Artemis lunar program, the Chinese mission
to the far side, attract much attention. The general audience discovered that a spacecraft’s trajectory
from the Earth to Mars is not straight but curved (Figure 1).
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Figure 1: Transfer orbits between the Earth and another planet

Roughly speaking, each of these trajectories is the union of arcs of ellipses. The shape of the
trajectory and the velocity of the spacecraft are ruled by the so-called Kepler laws (Karttunen et al.,
2008). Kepler’s 1st law reads that the trajectory of an object P orbiting an object S under the influence
of gravitation only is an ellipse with S at one of the foci. Kepler’s 2nd law explains how the velocity
changes along the trajectory (see Figure 3): flying from C to D or from E to F takes the same time if,
and only if, the curved triangles SCD and SEF have equal areas.

Figure 2: Kepler laws.

The Israeli Moon-bound probe Beresheet was planned to move along ellipses. At specific times,
thrust has been exploited to increase eccentricity, keeping the Earth as a focus, until the ellipse en-
globes the Moon. Then the probe has been slowed down to be captured by the Moon’s gravitational
field. At that time the trajectory is an ellipse with the Moon at a focus. The probe orbits te Moon in
the original direction. Figure 3 shows a diagram of the planned trajectory.

Artemis’s trajectory seems more complicated (Figure 4). The diagram on the left shows the points
were thrust is operated to change the geometric characteristics of the trajectory. After the engines
stop, the motion is again ruled by Kepler laws, and the trajectory follows an arc of a new ellipse with
the Sun at a focus. At some time, the probe is slowed down to be captured by the gravitation field of
the Moon. From now on, the orbit is an ellipse with the Moon as a focus. The figure on the left seems
static, but the figure on the right expresses the fact that actually the Moon moves on its orbit around
the Earth, pulling the spacecraft with it. Simple models in 2D and 3D (taking into account the fact
that the Sun also moves) have been displayed in [13]
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Figure 3: Beresheet’s trajectory (Credit: NASA - SpaceIL)

Figure 4: Diagrams of Artemis trajectory (Credit: NASA)
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These two examples explain why we explore bicircular and tricircular motions, (a) when all the
components are oriented in the same direction(Section 2) and (b) when one component is retrograde
(Section 3).

All this is a little bit caricatural. In reality, more than one space object influence the trajectory,
and the axis of a planet and/or a natural satellite may make some angle with the orbital plane. For
example, the axis of the Earth makes an angle of 23o27′ with the ecliptic plane. So, the ecliptic plane
and the equatorial plane of the moon may be different. This influences the geometric description of
the trajectories. Moreover, for travelling from the Earth to the Moon, engineers have to take into
account the gravitational influence of Mars also. As we are interested in simple models accessible to
either upper-high school or to beginning undergraduates, we simplify all this.

According to Kepler laws, the planetary motion is well described by an equation in polar coordi-
nates, namely

r =
p

1 + εθ
,

where r is the distance from the planet to the Sun, ε is the eccentricity of the ellipse and θ is the
angle to the planet’s current position from its position closest to the Sun (called aphelion). Early
undergraduates’ literacy with polar coordinates is generally not so high. Therefore, we chose to
work with parametric presentations for plane curves, which yielded the construction of, sometimes,
classical curves such as epitrochoids, epicycloids, etc. The orbits of the planets of the Solar System are
ellipses whose eccentricity is very close to 0, therefore for a 1st approximation, suitable for beginners,
the orbits have been modeled by circles centered at the Sun, and velocity is constant, encoded in the
angular velocity. Other simplifications were as follows:

• The mean distance Sun-Earth is equal to 1 (astronomical unit, A.U.), whence the definition of
E at the beginning of Section 2.

• The period of the Earth on its orbit is 1 (same remark as above).

• The orbital data for another planet is given in proportion to these data. We caplin in next section
why we decided not to use actual orbital data.

Actually, the only ”true” orbital data we can be interested in consists in distance between Sun and
planets, or between planets and their satellites, either natural or artificial. At the beginning of next
section, we explain why this is irrelevant to the present work. The author teaches in an advanced
course about satellites and Earth observation. There, the ”true” shape of orbits, (whence variable
velocity, etc.), inclination with respect to the equator, are considered. Anyway, the intuition acquired
with the simple models presented here helps.

1.2 What are we doing, what are the educational goals?
The ratio between the distances Sun-Earth and Earth-Moon is close to 413. No hope to present on a
screen the Sun and trajectories, neither of the Moon around the Earth, nor of an object orbiting the
Moon. Therefore, we build the activities with arbitrary values of the parameters, not with genuine
orbital data. Nevertheless, these choices provide constructions of interesting curves, from which the
student can imagine what happens in space. Most of the examples in [13] are planar, even when
taking the Sun’s motion into account: the Sun, the planet and the satellite move in the same plane (in
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Section 2). Animations and computations are performed with a Dynamic Geometry Software (DGS,
here GeoGebra) and a Computer Algebra System (CAS, here Maple 2024), and networking between
them. For one example, we compute an implicit equation for the trajectory, using Elimination. We
provide Maple session’s code.

In Section 4, we consider a model of a satellite moving around the planet on an orbit not included
in the plane of the planet’s orbit, here a polar orbit. In this last case, we begin working with paramet-
ric presentations for the orbits and implicitize the presentation. As for any space curve, an implicit
presentation shows it as the intersection of two surfaces (i.e. we look for 2 polynomial equations).
This provides a new opportunity to compare the affordances of plotting with a Dynamical Geome-
try Software (DGS) and with a Computer Algebra System (CAS), comparing parametric plots and
implicit plots.

The activities that we propose are based on exploration and discovery in a technology-rich en-
vironment. The outcome is multi-faced: plots based on numerical data, search for exact (symbolic)
expressions, implicitization, etc. Some of the activities with DGS provide some knowledge, but fur-
ther exploration has to be performed with the CAS, among other issues, analyzing numerical solutions
of a trigonometric equation (Section 3). The core of the search is based on thinking and computing in
a way, which has been learnt by undergraduates in a 1st Calculus course.

2 Tricircular motion: a satellite on a direct orbit around the
Moon in the SUN-Earth-Moon plane

We consider a moving point E given by (xE, yE) = (cos t, sin t). An object M orbits E according to

(xM , yM) = (cos t+ r cos(ht), sin t+ r sin(ht)) , (1)

where r is the distance from E and h encodes the orbital period1.
Now, we define an object Sat by the following formula:

(xSat, ySat) = (xM , yM) + r/2(cos(3hu), sin(3hu)). (2)

The orbit of Sat looks more complicated in any case. A GeoGebra applet [S1] is available at https:
//www.geogebra.org/m/mnsdv3fz; the reader is invited to explore with the sliders. The
orbits can be visualized (a) with the command Locus and (b) running an animation with Trace On.
The locus of E is a circle and the orbit of M is an epicycloid3. Examples are the dotted curves in
Figures 5,6 and 7.

Figure 5 shows 3 cases, for r = 0.2 and h = 3, 5, 6, 8, 9 (from left to right).
For for r = 0.4 and h = 3, 4, 5, 6, 8 (from left to right), we have Figure 6, and for r = 0.8 and

h = 3, 4, 5, 6, 9 (from left to right), we have Figure 7:
At first glance, we conjecture that for odd h, both the x−axis and the y−axis are axes of symmetry,

but for even h, only the x−axis is such. Of course, this requests a symbolic proof. Rotational
symmetries are not very apparent, but may exist. Broader exploration can be made with the above

1For the sake of simplification, we consider here only integer values for h. For non integer values, determining the
motion periodicity is harder. Such examples will be studied in a f2urther work.

3See https://mathcurve.com/courbes2d.gb/epicycloid/epicycloid.shtml.
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Figure 5: Three coplanar movements in the same direction - r = 0.2

Figure 6: Three coplanar movements in the same direction - r = 0.4

Figure 7: Three coplanar movements in the same direction - r = 0.8
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mentioned applet.Note that both trajectories, M viewed from the Sun and Sat viewed from E, are
epicycloids. The composition of the motions yield the complicated curves.

The comparison of two different points of views is interesting. On the basis of Tycho Brahe’s
observations, Kepler drew a sketch of the orbit of Mars viewed from the Earth [22]; the curve that he
plotted (Figure 8) is very similar to curves obtained in other situations (see [7]). In an other direc-

Figure 8: Kepler’s sketch of Mars’s orbit when viewed from the Earth

tion, the website https://mathcurve.com/courbes2d.gb/courbes2d.shtml shows
constructions of epicycloids by means of a circle rolling on another circle. We can construct the
complicated curves obtained in this section using a circle rolling on a circle rolling on a 3rd circle.
This is beyond the scope of the present paper. By the time these rows are written, the author is waiting
for the outcome of students’ activities.

3 A satellite on a retrograde lunar orbit in the SUN-Earth-Moon
plane

3.1 Equations and first examples
Here too, 3 different coplanar motions compose the satellite motion, when viewed from outside: the
planet E, its moon M and the satellite, all of them described by trigonometric parametric presentation.
The difference with the previous section is that here the satellite moves in retrograde direction. Recall
Artemis trajectory, where the probe orbits the Moon in retrograde direction (Figure 4). Models for the
composition of two direct motions and a retrograde 3rd motion have already been described in [13].
It provides non classical curves, as shown in Figure 10. The satellite moves according to the equation

(x, y, z) = (cosu, sinu) + r(cos au, sin au) + s(sin bu, c cos bu); u ∈ [0, 2π]. (3)

WLOG, we chose to work with coefficients 1/3 and 1/2, other choices could provide curves with
similar properties. For the mathematical work, the given interval can be replaced by the whole of
R, then the parametrization determines infinitely many copies of the same geometric locus. But
working with software requests a closed interval. With a suitable choice of the interval, and with the
increasing option for animation with a slider, GeoGebra mimics infinitely many periods on the orbit.
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The retrograde motion of the 3rd object is encoded by the last term in the sum. A GeoGebra applet
[S2] is available at https://www.geogebra.org/m/p7uaewbc.

For a = 1, the motion is actually bicircular and the curve is a hypotrochoid4.Examples with
r = 1/3 and s = 1/2 are displayed in Figure 9, for b = 3, 4, 5, 6, 9.

Figure 9: Three movements, one in retrograde direction - classical curves

The reader is invited to play with the 5 parameters involved and explore the existence of self-
intersections and of cusps. In [13], we show various examples, including the so-called Mystery
Curves, and apply them for creating Math Art and 3D printed objects5. Another point of view on
the Mystery Curves can be found in [4]. Figure 10 displays the output for r = 1/3, s = 1/2 and
(a, b) = (4, 8), (6, 14), (8, 14), (8, 17) from left to right. The two curves on the right show also a
partial view on how the animation is displayed.

Figure 10: Three movements, one in retrograde direction

3.2 Exploration of the shape of the curves
Using the different sliders to make the values of the parameters vary, provides activities with different
kinds of focus, according to teacher’s and students’ creativity. One of them is to study the symmetries
of the curves. Rotational symmetries can appear, but the greater the parameters a and b, the harder to
understand are the curves and rotational symmetries may remain unidentified. Generally the curves
present one or two axial symmetries, but not more. Rotational symmetries of order 5 appear for other
choices of the parameters, e.g., for (a, b) = (6, 9). All this is purely experimental, but in this last case,
computations with a CAS may be possible. Note that the explorations described here may provide

4See the Mathcurve page at https://mathcurve.com/courbes2d.gb/hypotrochoid/
hypotrochoid.shtml.

5Animations can be found in [14].
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conviction, but it is not a proof (for detailed analysis of the difference, and of what should be done,
refer to the book [19]).

Let us study one example. Figure 12 corresponds to (r, s) = (0.5, 0.3) (a, b) = 11, 4). The curve
seems to have a rotational symmetry of order 5. This can be explored in various ways. One of them
can be to prove that u ∈ R, Sat(u + 2π/5) = Sat(u), but this may be unilluminating, actually only
numerical, as there is no simple closed formula for these sines and cosines.

3.3 A 1st exploration - symmetry
On the basis of the conjecture that there is a 5-fold rotational symmetry, we consider one arc of the
curve, given by

(x, y, z) = (cosu, sinu) +
1

3
(cos au, sin au) +

1

2
(sin bu, c cos bu); u ∈

[
0,

2π

5

]
. (4)

The corresponding arc can be plotted with GeoGebra using the parametric presentation and the com-
mand Locus(Point creating the locus, slider). Then the arc should be rotated about the origin by an
angle of 2π/5. As the locus appearing on the screen is not recognized by the software as a geometric
construct, the automatic command for rotation does not work. The point A defined by Equation (4)
has to be rotated, using GeoGebra’s button for rotations, and is automatically identified as depending
on the parameter (the slider) u. Now the Locus command works. The process has to be iterated 4
times. The arcs are shown in Figure 11 with different colors and dots. A GeoGebra applet [S5] is

Figure 11: Exploration of the 5-fold symmetry of one of the curves

available at https://www.geogebra.org/classic/vhdkpfgk.
This process can be adapted to every case where a rotational symmetry seems to appear. Ex-

ploration with variable parameters (a, b) provides numerous examples with rotational symmetries of
exotic order (we mean not the simple cases generally shown in class, but order 7,11, 13 etc.). Exten-
sion of such constructs may provide interesting mathematical art, as in [7, 13].

3.4 A 2nd exploration - circumcircle
Here, the exploration is visual only. The Locus command provides a plot based on numerical data,
and the locus on the screen is not a geometrical construct. Therefore, the button and the intersection
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commands do not work here. Until now, we do not have a symbolic equation either. As the coordinates
are sums of sines and cosines, they are bounded. Is it possible top find a circumcircle? The situation
is illustrated in Figure 12.

Figure 12: The curve has a rotational symmetry of order 5

The number of points of intersection of the curve with a circle centered at the origin can give an
interesting indication. The exploration yields a radius approximatively equal to 1.6 fro a circumcircle.
In order to check this, it is necessary to solve the following equation

x(t)2 + y(t)2 = 1.62 (5)

for the unknown t. Hand-made computations are unilluminating, whence the importance to use a
CAS. Even with technology this is not trivial. After more than one hour on a recent computer with
a strong CPU, Maple did not provide an answer. Further attempts have been performed for (a, b) =
(6, 9). Experimentation with GeoGebra suggests that the curve is circumscribed by a circle centered
at the origin with a radius R between 1.7 and 1.8. Further experimentation has been made with Maple,
solving equations similar to Eq. (5) for variable radius. For each tested value of the radius, Maple
gave an immediate answer.

Experimentation provide the following output:

• For 1.7 ≤ R ≤ 1.73, Equation (5) has 10 real solutions and numerous complex non real
solutions. This corresponds to 10 points of intersection of the circle with the curve C. The
GeoGebra plot reveals that the circle is not a circumcircle to C.

• For R ≥ 1.74, Equation (5) has only non real solutions. The circle does not intersect the
curve C. A approximation of the radius can then be found numerically by a dichotomy method
(similar to the dichotomy method learnt by undergraduates in a 1st Calculus course6)

A similar process can be applied with GeoGebra. The radius of the circle has to be defined by a slider,
and the increment of the slider can be defined as smaller than the default one. The precision of the
work depends here on te user’s hand.

6This is a good opportunity to enhance the fact that learning ways of thinking is as important as learning new notions
and theorems.
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4 A satellite on a polar lunar orbit

4.1 With ”fixed Sun”
Because of the Earth revolution about its axis, a satellite orbiting the Earth on a polar orbit may pro-
vide imaging of the entire Earth surface, whence its importance for Earth observation. Details are to be
found in [5]; an online simulator is available at https://observablehq.com/@jake-low/
satellite-ground-track-visualizer. Here, for visualization and animations, the model
requests usage of a software for 3D geometry. We use GeoGebra’s 3D Graphics package. The Sun is
placed, as usual, at the origin. A ”planet” E is defined by the following equations (the coefficient 2
has be introduced in order to have ”reasonable” proportions on the plot):

xE(t) = 2 cos t

yE(t) = 2 sin t

zE(t) = 0

. (6)

and a moon M in the plane of the orbit of E by
xM(t) = 2 cos t+ 0.4 cos at

yM(t) = 2 sin t+ 0.4 sin at

zM(t) = 0

, (7)

where a is a positive parameter. The GeoGebra commands are as follows:

E=2(cos(u),sin(u),0)
M=E+0.4 (cos (au),sin(au),0)
Sat=M+0.4(cos(bu),sin(bu),0)

Sliders for a and for b have to be defined; here, we did it for integer values (otherwise, the pe-
riodicity issue becomes hard to deal with - we intend to addres this issue in a further work). The
coefficients 0.4 and 2 have been chosen in order to have a readable plot. We mentioned already that
the ratio between true distances between Sun, Earth, Moon, and artificial satellites in the Solar System
do not enable to display faithful models on a computer screen.

Now we define a satellite Sat around M orbiting in a plane perpendicular to the planes of the
orbits of E and M . 

xSat(t) = 2 cos t+ 0.4 cos at

ySat(t) = 2 sin t+ 0.4 sin at

zSat(t) = 0.4 cos bt

. (8)

Figure 13 shows the curves obtained for different values of the parameters. These are snapshots of a
GeoGebra applet [S3], available at https://www.geogebra.org/m/guwguzgk. On the left
are displayed the orbits of E and M , on the right the 3D situation is shown, including the orbit of
Sat. It is clear that the projection of the orbit of Sat on the x, y−plane is the orbit of M . This one is a
epicycloid, a well-know curve (see https://mathcurve.com/courbes2d/epicycloid/
epicycloid.shtml). For example, (a, b) = (3, 2) gives a nephroid.
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Figure 13: Polar orbits around a moon
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4.2 With ”moving Sun”
For the sake of simplicity, we consider a ”Sun” moving according to the parametric presentation
(x, y, z) = (0, 0, u); u ∈ R. The only modifications to the commands are:

Sun=(0,0,u)
E=Sun+2(cos(u),sin(u),0)

The other points are changed automatically. Figure 14 shows two cases, corresponding to (a, b) =
(3, 2) on the left and to (a, b) = (5, 6) on the right. The plane containing the orbits of E and M has
been made apparent, and moves according to the Sun.

Figure 14: Polar orbits around a moon - a dynamic view with moving Sun

5 Implicitization

5.1 The process and the implicit equation – a planar situation
All the situations and activities presented above are based on trigonometric parametric equations for
the different curves. For graphics, these provide accurate plots, as explained in [31]. For other is-
sues, it may be better to have implicit equations. Therefore, books such as [30, 25, 29] and online
encyclopedias of curves display both parametric and implicit equations (also polar equations), when
possible. Implicitization is not an easy task, and requires heavy algebraic machinery. For our trigono-
metric parametric equations, sines and cosines have to be substituted by rational expressions, then
polynomials can be defined. They generate ideals, for which algorithms from Gröbner bases theory
and Elimination are generally used. For example, this has been done extensively in [6].

The situation given here is more complicated, as we deal with tricircular motion. As we saw in
Equations (8), sines and cosine appear with 3 different angular velocities, which makes the substitu-
tion more intricate. We show here only one example.

The curve presented in Figure 12 has parametric equations

(x, y) = (cos(u) + 0.5 cos(11u) + 0.3 sin(4u), sin(u) + 0.5 sin(11u) + 0.3 cos(4u)) (9)
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It is well-known that for every u ∈ R, it exists a t ∈ R such that{
cosu = 1−t2

1+t2

sinu = 2t
1+t2

. (10)

On the one hand, using De Moivre formula, we have:

(cosu+ i sinu)4 = cos 4u+ i sin 4u.

On the other hand, Newton binomial yields:

(cosu+ i sinu)4 = cos4 u+ 4i cos3 u sinu− 6 cos2 u sin2 u− 4i cosu sin3 u+ sin4 u.

Comparing real parts and imaginary parts in bote equations, we obtain:{
cos 4u = cos4 u− 6 cos2 u sin2 u+ sin4 u

sin 4u = 4 cos3 u sinu− 4 cosu sin3 u
. (11)

Substituting here Equations (10) and simplifying, we obtain:{
cos 4u = t8−28t6+70t4−28t2+1

t2+1)4

sin 4u = −8t7+56t5−56t3+8t
(t2+1)4

(12)

By the same method we obtain:
cos 11u = −11 cosu sin10 u+ 165 cos3 u sin8 u− 462 cos5 u sin6 u+ 330 cos7 u sin4 u

−55 cos9 u sin2 u+ cos11 u

sin 11u = − sin11 u+ 55 cos2 u sin9 u− 330 cos4 u sin7 u+ 462 cos6 u sin5 u

−165 cos8 u sin3 u+ 11 cos10 u sinu

(13)

and finally7
(t2 + 1)11 cos 11u = −t22 + 231t20 − 7315t18 + 74613t16 − 319770t14

+646646t12 − 646646t10 + 319770t8 − 74613t6 + 7315t4 − 231t2 + 1

(t2 + 1)11 sin 11u = 22t21 − 1540t19 + 26334t17 − 170544t15 + 497420t13

−705432t11 + 497420t9 − 170544t7 + 26334t5 − 1540t3 + 22t

(14)

Now we substitute into Equations (9):

10(t2 + 1)11x = −15t22 − 24t21 + 1065t20 − 36925t18 + 504t17 + 372315t16 + 1536t15

−1599750t14 + 1680t133232810t12 − 3232810t10 − 1680t9 + 1599750t8 − 1536t7

−372315t6 − 504t5 + 36925t4 − 1065t2 + 24t+ 15

10(t2 + 1)11y = 3t22 + 130t21 − 63t20 − 7500t19 − 315t18 + 132570t17 − 273t16

−850320t15 + 990t14 + 2491300t13 2730t12 − 3522120t11

+2730t10 + 2491300t9 + 990t8 − 850320t7 − 273t6 + 132570t5 − 315t4 − 7500t3 − 63t2

130t+ 3
(15)

7The equations are presented as they are for technical reasons.
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Denote by P1(x, y, t) (resp. P2(x, y, t)) the polynomial obtained by subtracting right hand side of 1st
(resp. 2nd) equation from its left hand side. These polynomials generate an idela I =< P1, P2 > in
R[x, y, t]. By elimination we obtain (quickly) one polynomial in x, y of degree 22. It is too long for
being written here, we obtained it within a Maple session using the PolynomialIdeals package.

Here is the Maple code [S6] for the session. Note that the coefficients 0.5 and 0.3 have been
entered as 1/2 and 3/10 respectively, as a priori the algorithms in PolynomialIdeals do not like floating
point.

restart; with(PolynomialIdeals);
trig4 := (cos(u) + sin(u)*I)ˆ4;
cos4 := evalc(Re(trig4));
sin4 := evalc(Im(trig4));
# rational expressions for cosine and sine
cos4rat := subs(cos(u) = (-tˆ2 + 1)/(tˆ2 + 1), subs(sin(u) = 2*t/(tˆ2 + 1), cos4));
cos4rat := simplify(cos4rat);
sin4rat := subs(cos(u) = (-tˆ2 + 1)/(tˆ2 + 1), subs(sin(u) = 2*t/(tˆ2 + 1), sin4));
sin4rat := simplify(sin4rat);
trig11 := (cos(u) + sin(u)*I)ˆ11;
cos11 := evalc(Re(trig11));
sin11 := evalc(Im(trig11));
cos11rat := simplify(subs(cos(u) = (-tˆ2 + 1)/(tˆ2 + 1),

subs(sin(u) = 2*t/(tˆ2 + 1), cos11)));
sin11rat := simplify(subs(cos(u) = (-tˆ2 + 1)/(tˆ2 + 1),

subs(sin(u) = 2*t/(tˆ2 + 1), sin11)));
expand(numer(sin11rat));
# the output was long - that is a way to have a shorter expression
xsat := (-tˆ2 + 1)/(tˆ2 + 1) + (1/2)*cos11rat + (3/10)*sin4rat;
xsat := simplify(xsat);
ysat := 2*t/(tˆ2 + 1) + (1/2)*sin11rat + (3/10)*cos4rat;
ysat := expand(ysat);
ysat := simplify(ysat);
# definition of polynomials - pay attention to capital and lowcase letters
p1 := 10*(tˆ2 + 1)ˆ11*xsat;
P1 := 10*(tˆ2 + 1)ˆ11*x - p1;
p2 := 10*(tˆ2 + 1)ˆ11*ysat;
P2 := 10*(tˆ2 + 1)ˆ11*y - p2;
K := <P1, P2>; # definition of an ideal
KE := EliminationIdeal(K, {x, y});
Gen := Generators(KE);
Gen[1];
Gen[2];
evala(Factors(Gen[1]));

All the commands give an almost immediate answer, elimination requests a few seconds. The com-
mand Gen[2] returns an error message; it verifies that the ideal KE is generated by one polynomial.
This had to be checked, as the output is dispatched on about 30 rows. The last command checks that
this polynomial is irreducible.
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5.2 A non planar situation
Here too, we illustrate the process with an example. We consider the first case shown in Figure 13.
We have:

(x, y, z) =

(
2 cos t+

2

5
cos 3t, 2 sin t+

2

5
sin 3t,

2

5
cos 2t

)
. (16)

With the same method as above, based on Equations (10), and obtain the following rational parametriza-
tion for the curve: 

x = 4(−3t6+5t4−5t2+3)
5(t2+1)3

y = 32t(t4+1)
5(t2+1)3

z = 2(t4−6t2+1)
5(t2+1)2

(17)

We transform equations (17) into polynomials

P1(x, y, z) = 5(t2 + 1)3x+ 12t6 − 20t4 + 20t2 − 12

P2(x, y, z) = 5(t2 + 1)3y − 32t(t4 + 1)

P3(x, y, z) = 5z(t2 + 1)2 − 2t4 + 12t2 − 2

which generate an ideal J =< P1, P2, P3 >. After elimination of the parameter t, we obtain an
elimination ideal JE generated by 2 polynomials F1(x, y, z) and F2(x, y, z), such that:

F1(x, y, z) = 25x2 + 25y2 − 100z − 104

F2(x, y, z) = 125z3 + 25y2 + 250z2 + 60z − 72

It was expected to find 2 polynomials, as a space curve is defined as the intersection of two
surfaces, each one determined by an equation. The 2 surfaces are displayed in Figure 15. Note that

Figure 15: The trajectory for (a, b) = (3, 2) with implicit equations

the intersection curve is difficult to identify. To have a good idea, the plot has to be rotated on the
screen using the mouse, but even so the visual impression is not perfect. Part of the problem is the
choice of the mesh to visualize surfaces in 3D space (see [31]). The plot can be enhanced if adding
the parametric plot of the space curve. Figure 16 shows the respective plots obtained with the rational
parametrization (on the left) and the trigonometric parametrization (on the right). The plots have been
obtained using the following commands:

174

The Electronic Journal of Mathematics and Technology, Volume 18, Number 3, ISSN 1933-2823



(a) Rational parametrization (using the same notations as above):

cratspace := spacecurve([xsatspace, ysatspace, zsatspace], t = -15 .. 15,
numpoints = 5000, thickness = 3, color = black);

(b) Trigonometric parametrization (one period is enough):

ctrigplot := spacecurve([2*cos(t) + 2/5*cos(3*t),
2*sin(t) + 2/5*sin(3*t), 2/5*cos(2*t)],

t = 0 .. 2*Pi, color = black, thickness = 7)

Note that the trigonometric parametrization gives a complete plot, but something is missing when
using a rational parametrization. Filling the gap is not always possible because of issues related to
limits at infinity of the involved rational functions.

Figure 16: Plots with two parameterizations of the same curve

Figure 17 shows the surface and enhances the intersection curve.

6 Conclusions

6.1 Networking between technologies
The exploration and determination of geometric loci is an important topic in geometry. A few ex-
amples are provided by [1, 3, 2]. Our study relies strongly on the usage of two kind of software: a
Dynamic Geometry Software (DGS), here GeoGebra, and a Computer Algebra System (CAS), here
Maple 2024. The DGS enabled to explore the curves dynamically. It is natural to represent the dy-
namics of mobile points using a slider, and the trajectories are displayed dynamically (using Trace
On, without this the points move but the user’s eyes do not keep a lasting impression). Moreover, the
automated command Locus provides complete pictures of the trajectories. Joint usage of both helps
to have a graphical understanding of the phenomenon.

Nevertheless, for some parts of the study, the abilities of the DGS were not enough. Actually, it
is well known that for algebraic symbolic computations, a stronger software is needed. Therefore we
used Maple. In this study, we did it at two places:

175

The Electronic Journal of Mathematics and Technology, Volume 18, Number 3, ISSN 1933-2823



Figure 17: Visualization of the curve as intersection of two surfaces

• Implicitization involves a large amount of computations (generally transparent to the user, until
the output is displayed). We have a detailed example in subsection 5.1. This is not a new
phenomenon, for example it appears already in [6, 10, 11]. The computation of the elimination
ideal computes actually a projection. For topological reasons (work is done according to Zariski
topology), it is important to check whether the obtained polynomial is irreducible or not. It
happens that irrelevant components appear, but this is not the case.

• In subsection 3.2, the exploration process is similar the dichotomy method taught to under-
graduates for solving equations numerically. The DGS is mostly based on numerical methods,
whence the need to add other algorithms which can check the results symbolically. This is done
in the GeoGebra-Discovery companion, but not for the study here, even if we tried a more geo-
metric construction of the mobile point Sat. Here we have an originality: generally switching
from DGS to CAS is motivated by the need for symbolic computations, but here one of the
switches was motivated by the need to make a numerical exploration, which could not be done
totally with the other software..

In any case, we have here a new example of the importance of networking between different kinds of
software. Even when both kinds provide similar features, they may have different affordances. Duval
[16, 17]) explained that mathematical objects are abstract and can be approached and understood
only using different registers of representation. Traditionally, the identified registers are numerical,
symbolic, graphical, etc. The activities described here show that even within the same register, but
with different tools, the object is presented in a different way.

An important feature of a DGS is interactivity: the possibility to drag points and the availability
of sliders are central. They allow animations, with possible modifications in real time. Animations
are also available with a CAS, but they require a priori programming, and the possibility to interact
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with the animation in real time is limited.
For a long time, wishes to develop automated networking between CAS and DGS have been

expressed clearly [27, 6, 12]. In the past, it existed for certain questions between Maple and MatLab,
but not on a very large scale. It is possible to export the outputs in a different language: Maple allows
to export the session to rtf or LaTeX format; this is useful, but not for the sake of computations and
explorations. It allows export to STL format; this is important for exploration, as this is the language
used by certain 3d printers [13]. This has also limitations, and for certain problems, we had to switch
to another language, without automated export [15]. Advances have been recently announced with
GeoGebra-Discovery [24].

Generally, a DGS and a CAS provide different registers of representation (in the sense of Duval
[16, 17]): numerical (this was almost all what was available a few decades ago), graphical, symbolic,
etc. A central issue was switching between registers, most CAS enabling to switch from symbolic to
graphical (generally via the numerical, but this may be transparent), sometimes in reversed direction,
from graphical to numerical (in DGS), more rarely from graphical to symbolic.

6.2 Modeling and Creativity
The 4 C’s of 21st Century Education are already well-known and documented, as defined in OECD
documents [26, 28]: Collaboration, Communication, Critical Thinking and Creativity. The present
paper is anew contribution to we emphasize two of theses C’s: Communication and Creativity. As
discussed in the previous subsection, Communication is understood here between machines, the man-
and-machine communication being minor, and between humans not discussed at all. As a follow-up
of [7] (where we explained being on the verge of mathematical art), we have here a new contribution
to explore Creativity, on the basis of simple models of trajectories in space.

We enhanced the exploratory aspect of the work, which has been enabled by the sliders of the
applets. It is clear that exploration request, first of all, the 5th C, namely Curiosity8.

Actually, the initial motivation was to describe/model trajectories in space (Section 1.1). Because
of the complexity of space reality, we had to switch to simple models. Generally, models are intended
to provide tools for understanding the concrete situation [20]. Here we went to another direction,
as ”true modeling” is out of reach of the visualization abilities of our computers. Choosing arbitrary
parameters may provide some understanding of concrete situations, but it leads to create exotic curves
beyond what is usually presented in courses. The regular usage of modelling appears in the left part
of Figure 18 (Source: [8]), we went more towards the right part.

Finally, we wish to mention that Duval [16, 17] explained that in opposition to other scientific
domains, where the objects of study are present on the table or graspable, mathematical objects are
abstract and can be studied only via representations, that he classifies into registers. Switching be-
tween registers enable to master the object. We did it between numerical, symbolic and graphical
registers. In [13], a new register is proposed, namely 3D printed objects, which are really graspable.
Their pros and cons are discussed there, such as the necessity to thicken the curve to have them 3d
printed. This register is beyond the scope of the present paper.

Interactive exploration is intended to educate students to be active and more involved in their
learning process than with the traditional segment definition-theorem-proof. The teacher is a mentor

8As we mentioned initially that we have been inspired by news from the space exploration, we cannot omit to recall
that one of the NASA robots on Mars is called Curiosity.
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Figure 18: Modelling and creativity

and is here to facilitate the exploration, to help to understand, not to convey knowledge ex-cathedra.
Nowadays, starting from real examples, taken from everyday life, from the students’ culture, or from
the news, not only motivates them to learn here and now, but also may improve their preparation for
professional life and long life learning.

7 Supplementary Electronic Material
[S1] A GeoGebra applet for tricircular motion, in Section 2.
[S2] A GeoGebra applet for tricircular motion, one object moving in retrograde direction, in

section 3.
[S3] A GeoGebra applet for a lunar polar orbit, in subsection 4.1.
[S4] A GeoGebra applet for a lunar polar orbit, in section 5.2
[S5] A GeoGebra applet to check 5-fold symmetry of a trajectory, in section 3.3.
[S6] A Maple worksheet for implicitization, in subsection 5.1.
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